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Time resolved methods give access to states that
are difficult to achieve using static methods
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*Some phenomena only occur on ultrafast (~ps) time scales (e.g. ultrafast phase transitions)
*Shock wave experiments provide information about equilibrium states at very extreme pressures

*A primary advantage of our technique is that it gives access to transitory states on ultrafast time
scales — at the speed of sound, picoseconds equal nanometers



Shock wave experiments can provide equation of @

state data for very extreme conditions... =
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*A shock wave is a discontinuous change in thermodynamic state that propagates
faster than the speed of sound in the pre-shocked material

*These are fast, destructive single shot experiments that achieve extreme conditions
with data taken over nanosecond to microsecond time scales



But single shock experiments can only access a limited range of

thermodynamic states — typically at a higher temperature than
obtained with isentropic compression
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*Not a significant change for incompressible materials (at pressures we can achieve)

very significant for more compressible materials like hydrogen

*Addressed with numerous other schemes including isentropic compression with
ramp waves and reverberating shock waves, and with shocked precompressed

materials

-



Precompression enables more versatile studies through @
variation of the initial material state IS
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*Shock dynamics — precompression gives a completely different
hugoniot

‘Phase transitions — tuning the initial state enables “differential”
studies



We probe ultrafast shock induced dynamics using w
pulsed interferometry |@

Optical wavefronts
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Pump initiates an ultrafast shock which propagates through a metal layer and is
— injected into the pressure medium

*No need for direct optical excitation (i.e. transparent pressure medium)
*Access to longitudinal material properties by time of flight measurements

*Well known technique (e.g. Gahagan et al., PRL 85 (2000) 3205), but here in a
standard DAC at high pressure



Film motion and the acoustic front —
contribute to the measured phase shift .@
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For a given pump-probe delay,
the measured phase shift
gives a finite derivative (over 5
ps), which is integrated to
give the total phase shift. The
integrated phase shift can be
separated into two
contributions: a component
associated with the film and
an oscillatory component
associated with the scanning
etalon formed by the Al film
and the shock wave
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The period of the oscillation gives the shock velocity and the amplitude of the
oscillation gives the refractive index change




The data fit a sinusoidal oscillation nicely L@
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The amplitude of the phase oscillations implies an index difference of
about 2-3x10-2. Assuming the static index of refraction, this implies a
transient pressure around 2-3 GPa in the medium (APL 92 (2008)).




We have obtained data up to static —

pressures < 25 GPa A
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There is a significant deviation from low strain, low frequency speed of
sound data at intermediate pressures




We also observe a significant variation of _
speed as a function of pump energy |E
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The discrepancy between the sound speed and our measurement is
probably a combination of the material response at high frequency (~100
GHz) and nonlinearity at high strain




Chirped pulses allow us to apply a sustained
pump to the sample and simultaneously acquire

Optical wavefronts

4 ________________________________ >_>_>_>C___ |

: ‘ LJ Ul Methanol—
L Probe Ref. ethanol
PBS DAC

NA-LA=E-DG- Q«l _____ .

Spectrometer

Al film

Inllgr%;ng & focusmg
| Ref lens

Diamond

«Allow ablative, single shot excitation
+>300 ps acquisition window with 2-3 ps time resolution

-Data equivalent to multiple shot technique for an irreversible process




Single shot observation of shock waves in 1 um aluminum on —_
glass |&§;T
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Based on comparisons with data from LANL and Evans et al. (PRL 77
(1996) 3359), we can reach shock pressures under these conditions
(outside the DAC) >45 GPa in Al



Single shot observation of shocked nitromethane @
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We can obtain the index of refraction change at the shock front, the
shock velocity, particle velocity and pressure increase. The calculated
shock and particle velocity give the correct hugoniot to within 10%
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We can reach shock pressures of > 20 GPa in nitromethane (compared to >

only be possible with precompression

50 GPa in Al alone), but we would like to get higher pressure, which may




Single shot observation of a shock wave in 1 um
aluminum in a DAC IS
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The sample in this case is a layer of Al directly between two diamonds at
~5-10 GPa precompression — we estimate a shock pressure around 40 GPa




Probably more than just thermal expansion @

Is occurring in the Al =

Variation in the arrival time and the
duration of the surface motion cannot
be fully explained by expansion of a
100 nm heated Al layer
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It’s likely that we’re generating a plasma in the Al. This is a good result — it
means we can deliver high intensity light to the ablator.




Summary and future directions ,@

‘We have observed shock and acoustic waves under static precompression in a
diamond anvil cell

Similar observations can be used to shock soft materials and explosives
into thermodynamic regimes that are difficult to obtain

*These techniques have the capability to observe ultrafast phase
transformations under shock and acoustic modulation

*Single shot shock pressure up to 40 GPa, with precompression in the 10 GPa
range

*Acoustic wave measurements at pressures > 50 GPa

‘We are also able to measure transit times through metals at high
precompression

‘We plan to look at shocking soft materials and examining ultrafast phase
transformations next

This work was supported by LLNL LDRD project 06-SI-005 and was performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.




Ultra

fast acoustics can be used (and may be necessary) to @
A

investigate complex mesoscale dynamics
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*Synchronization — complex phenomena typically include a time
smearing stochastic component

*Material damage — short wavelength probes deposit a lot of
energy in the sample

_



What is a shock wave?

each point of the wave travels
to the right with velocity c+u
P where cis the sound speed at
pressure Pand uis the
particle velocity

both ¢ and u increase with P

62+M2

c,t+u

Knudson, HEDP Summer School (2005)

Shock waves form in materials with normal acoustic velocity dispersion — the part of the wave at a higher pressure
travels at a higher velocity. Ultimately, a discontinuity (shock front) forms where the sound speed in pre-shocked
material is lower than the shock velocity and the sound speed in the post-shocked material is larger than shock

velocity.

X



Shock waves form due to acoustic dispersion ™
with pressure IIE‘

each point of the wave travels likewise at the rear of the
to the right with velocity c+u pressure pulse the pressure
P where cis the sound speed at drops causing the lower
pressure Pand uis the pressure region to lag behind
particle velocity the higher pressure region

both ¢ and u increase with P

Knudson, HEDP Summer School (2005) X

Shock waves form in materials with normal acoustic velocity dispersion — the part of the wave at a higher pressure
travels at a higher velocity. Ultimately, a discontinuity (shock front) forms where the sound speed in pre-shocked
material is lower than the shock velocity and the sound speed in the post-shocked material is larger than shock

velocity.



Shock waves form due to acoustic dispersion ™
with pressure IIE‘

each point of the wave travels likewise at the rear of the
to the right with velocity c+u pressure pulse the pressure
P where cis the sound speed at drops causing the lower
pressure Pand uis the pressure region to lag behind
particle velocity the higher pressure region

both ¢ and u increase with P

Knudson, HEDP Summer School (2005) X

Shock waves form in materials with normal acoustic velocity dispersion — the part of the wave at a higher pressure
travels at a higher velocity. Ultimately, a discontinuity (shock front) forms where the sound speed in pre-shocked
material is lower than the shock velocity and the sound speed in the post-shocked material is larger than shock

velocity.



Isentropic compression with ramp waves and i
shocked precompressed materials are hot topics LEJ
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These experiments provide data about thermodynamic states more similar to
planetary interiors than single shock experiments from low pressure



Where do we fit in? ™
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-Ultrafast material dynamics and chemistry under a much wider range of initial conditions

‘Detonation chemistry of explosives that cannot be achieved any other way (LLNL’s
interest)

*A 1 person, table top experiment —appropriate for intermediate scale experiments in the
Mbar regime



Ultrafast interferometry is a very sensitive

technique |E

Probe is imaged onto spectrometer... Dataset from imaging spectrometer...
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... phase as a function of position on the slit.

Typically, phase shifts equivalent to <1 nm of surface displacement can
be detected in a single shot.




There is a simple model for the measured
phase E
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We observe response through relatively thick layers of metal i
cell capable of very high (>50 GPa) static pressure L@‘

Response of a ~4 um thick layer of Fe
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Observation through thicker layers will provide more accurate velocity
measurements as well as enabling very high applied pressure



Measurements of sound speed in Fe directly
compressed up to 50 GPa IIE
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Hysteresis in velocity probably corresponds to lag in phase transformation




Pump nonlinearity, diamond table damage, —__
and self-focusing are significant issues |@
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*Long pump duration (800 fs) — reduce peak power to avoid filament formation

*High numerical aperture pump focus — diffraction dominates focusing, avoids
table damage

*Focus behind sample — a very tight focus gives too small a pump spot at the
focus




Ultrafast experiments have generally —
smaller scale LEJ

With total propagation distances
around 1 um (corresponding to a total
delay < 200 ps), a reasonable aspect Diamond
ratio can be obtained even with a 20
um FWHM pump pulse...

Gasket

Al MeOH Shock

front
0 um

A very small pump spot allows the
pump energy to be smaller, mitigating
peak power dependent effects like
pulse self-focusing, and allowing the
use of large numerical aperture
focusing, which reduces the chance
of damage at the diamond table

*Ultrafast time resolution enables small scale experiments

Different damage mechanism than ns scale experiments




We have demonstrated that we can ablate
samples in the DAC with ~ 100 fs pulses @

‘We were able to ablate gold under high static pressure in both liquid and solid
media (argon).

*A conventional DAC was used without any modifications — no additional
constraints imposed.

*Technique should work on range of interesting samples possibly with suitable
choice of ablator




Typical detonation fronts are “thick” @
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Many microns of spatial extent, not including propagation
time to develop a steady state detonation front

The DAC and ultrafast shocks can be used to investigate differential or overdriven
behavior of molecules that detonate, without having to develop a traditional detonation
front — ultrafast techniques can give access to the chemical reaction



Diamond may be a convenient material with

which to calibrate the pressure
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We can measure the strain in the diamond by estimating the compressed

volume and measuring the degree of compression




Shock wave excitation of soft materials from low
pressure E
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Precompression starts materials at higher density giving higher pressure injected into the
pressure medium



